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Abstract

We have sampled the artist social
network of Myspace and to it
applied the pairwise relational
connectivity measure Minimum
Cut/Maximum Flow. These values
are then compared to a pairwise
acoustic Earth Mover's Distance
measure and the relationship is
discussed. Further, a means of
constructing playlists using the
maximum flow value to exploit
both the social and acoustic
distances is realized.
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e Only looking at the Artist Network

e A small portion of statistically
significant size iIs used

e Snowball sampling (breadth first)
starts at a random entry point and
follows only top friends

Maximum Flow/

Minimum Cut

e nodes as a collection of sources
and sinks for traffic or current

e weighted edges represent
capacity
¢ |ooking for maximum capacity

Results
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Measuring Acoustic Distance

e Extract sequence of 0.1s 20-bin
MFCCs for each song

e Train GMM for artist based on
concatenation of song MFCCs

e Create n X n matrix of Earth
Mover's Distance A;;between the
GMMs corresponding to each pair of
nodes in the sample

Extract
MFCC for

Train GMMwith
concatenation
of MFCCs

Extract
MFCC for
song N

Create matrix
of EMD values
across network

e sampled graph
x randomized graph ||

Conclusions and Future Work
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Max Flow | median | deviation | randomized | deviation
1 40.80 1.26 39.10 —-0.43
2 45.30 5.76 38.34 —1.19
3 38.18 —-1.35 38.87 —0.66
4 38.21 -1.32 38.64 —0.89
5 40.00 0.47 39.11 —0.42
6 41.77 2.25 39.02 —0.51
7 39.94 0.41 39.24 —0.29
8 39.38 —-0.15 38.76 —-0.77
9 38.50 —1.03 38.87 —0.66
10 39.07 —0.46 40.85 1.32

median of 39.53.

Table 1: Node pairs average EMD values grouped by actual minimum
and randomized minimum cut values, shown with deviations from the global

H-value | P-value
From sample 12.46 0.19
Random permutations 911 0.43

10

cut values

Table 1: TheKruskal-Wallis one-way ANOVA test results of EMD against max-
imum flow for both the sasmpled graph and it’s random permutations. The

H-values are drawn from a chi-square distribution with 10 degrees of freedom.
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e Expected inverse relationship does

not appear to exist between Max
Flow and EMD

e Since these spaces are not correlated
can we use them together to make
assertions?

e Maximum Flow playlist shows
promise in preliminary prototypes
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software available:

http://mypyspace.sourceforge.net
http://omras2.doc.gold.ac.uk/software/fftextract/
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